首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   16篇
  国内免费   2篇
化学   621篇
晶体学   26篇
力学   25篇
数学   17篇
物理学   224篇
  2023年   4篇
  2022年   2篇
  2021年   8篇
  2020年   12篇
  2019年   10篇
  2018年   3篇
  2017年   8篇
  2016年   10篇
  2015年   21篇
  2014年   31篇
  2013年   71篇
  2012年   49篇
  2011年   52篇
  2010年   45篇
  2009年   67篇
  2008年   70篇
  2007年   45篇
  2006年   55篇
  2005年   57篇
  2004年   36篇
  2003年   34篇
  2002年   34篇
  2001年   28篇
  2000年   15篇
  1999年   19篇
  1998年   29篇
  1997年   13篇
  1996年   7篇
  1995年   13篇
  1994年   10篇
  1993年   10篇
  1992年   15篇
  1991年   7篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有913条查询结果,搜索用时 359 毫秒
31.
The International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty will include measurements of Xe fission products. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which detects Xe fission products using a beta-gamma counting system for 131mXe, 133mXe, 133gXe, and 135gXe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse-height spectra of gamma-energy versus beta-energy are obtained. The plastic scintillator spectrum in coincidence with the 31-keV X-rays from 131mXe. 133mXe, and 133gXe is a complex mixture of conversion electrons and betas. A new technique to simultaneously measure the delayed coincidence (T 1/2 = 6.27 ns) between beta-particles from 133gXe and conversion electrons depopulating the 81-keV state in 133 Cs is being developed. This technique allows separation of the 133gXe beta spectrum from the conversion electrons due to 131mXe and 133mXe and uniquely quantifies all three nuclides.  相似文献   
32.
Realistic representation of stochastic inputs associated with various sources of uncertainty in the simulation of fluid flows leads to high dimensional representations that are computationally prohibitive. We investigate the use of adaptive ANOVA decomposition as an effective dimension–reduction technique in modeling steady incompressible and compressible flows with nominal dimension of random space up to 100. We present three different adaptivity criteria and compare the adaptive ANOVA method against sparse grid, Monte Carlo and quasi-Monte Carlo methods to evaluate its relative efficiency and accuracy. For the incompressible flow problem, the effect of random temperature boundary conditions (modeled as high-dimensional stochastic processes) on the Nusselt number is investigated for different values of correlation length. For the compressible flow, the effects of random geometric perturbations (simulating random roughness) on the scattering of a strong shock wave is investigated both analytically and numerically. A probabilistic collocation method is combined with adaptive ANOVA to obtain both incompressible and compressible flow solutions. We demonstrate that for both cases even draconian truncations of the ANOVA expansion lead to accurate solutions with a speed-up factor of three orders of magnitude compared to Monte Carlo and at least one order of magnitude compared to sparse grids for comparable accuracy.  相似文献   
33.
34.
Bimetallic catalysts have demonstrated properties favorable for upgrading biofuel through catalytic hydrodeoxygenation. However, the design and optimization of such bimetallic catalysts requires the ability to construct accurate, predictive models of these systems. To generate a model that predicts the kinetic behavior of benzene adsorbed on Pt (1 1 1) and a Pt3Sn (1 1 1) surface alloy (Pt3Sn (1 1 1)), the adsorption of benzene was studied for a wide range of benzene coverages on both surfaces using density functional theory (DFT) calculations. The adsorption energy of benzene was found to correlate linearly with benzene coverage on Pt (1 1 1) and Pt3Sn (1 1 1); both surfaces exhibited net repulsive lateral interactions. Through an analysis of the d-band properties of the metal surface, it was determined that the coverage dependence is a consequence of the electronic interactions between benzene and the surface. The linear coverage dependence of the adsorption energy allowed us to quantify the influence of the lateral interactions on the heat of adsorption and temperature programmed desorption (TPD) spectra using a mean-field model. A comparison of our simulated TPD to experiment showed that this mean-field model adequately reproduces the desorption behavior of benzene on Pt (1 1 1) and Pt3Sn (1 1 1). In particular, the TPD correctly exhibits a broadening desorption peak as the initial coverage of benzene increases on Pt (1 1 1) and a low temperature desorption peak on Pt3Sn (1 1 1). However, due to the sensitivity of the TPD peak temperature to the desorption energy, precise alignment of experimental and theoretical TPD spectra demands an accurate calculation of the adsorption energy. Therefore, an analysis of the effect of the exchange-correlation functional on TPD modeling is presented. Through this work, we show the necessity of incorporating lateral interactions into theoretical models in order to correctly predict experimental behavior.  相似文献   
35.
In this study, ultrasonic assisted synthesis of Pd-Ni/Fe3O4 core–shell nanoalloys is reported. Unique reaction condition was prepared by ultrasonic irradiation, releasing the stored energy in the collapsed bubbles and heats the bubble contents that leads to Pd(II) and Ni(II) reduction. Co-precipitation method was applied for the synthesis of Fe3O4 nanoparticles (NPs). Immobilized solution was produced by sonicating the aqueous mixture of Fe3O4 and mercaptosuccinic acid to obtain Pd-Ni alloys on Fe3O4 magnetic NP cores. The catalytic activity of the synthesized Pd-Ni/Fe3O4 core–shells was investigated in the Suzuki-Miyaura CC coupling reaction and 4-nitrophenol reduction, which exhibited a high catalytic activity in both reactions. These magnetic NPs can be separated from the reaction mixture by external magnetic field. This strategy is simple, economical and promising for industrial applications.  相似文献   
36.
The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(1 1 0) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(1 1 0) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(1 1 0) undergoes a facile thermal reaction to form a photoactive acetaldehyde–oxygen complex. UV irradiation of the acetaldehyde–oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.  相似文献   
37.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   
38.
Gaseous dibenzo-7-phosphanorbornadiene P-sulfide anions APS-(A=C14H10 or anthracene) were generated via electrospray ionization, and characterized by magnetic-bottle photoelectron spectroscopy, velocity-map imaging (VMI) photoelectron spectroscopy, and quantum chemical calculations. The electron affinity (EA) and spin-orbit (SO) splitting of the APS· radical are determined from the photoelectron spectra and Franck-Condon factor simulations to be EA=(2.62±0.05) eV and SO splitting=(43±7) meV. VMI photoelectron images show strong and sharp peaks near the detachment threshold with an identical electron kinetic energy (eKE) of 17.9 meV at three different detachment wavelengths, which are therefore assigned to autodetachment from dipole-bound anion states. The B3LYP/6-31++G(d,p) calculations indicate APS· has a dipole moment of 3.31 Debye, large enough to support a dipole-bound electron.  相似文献   
39.
The dynamical behavior of the Quantum Cellular Automaton (QCA) is described here as a Markov Process. Ergodicity and recurrence, emergent properties of the discrete dynamical QCA system, are defined in the context of the characteristic polynomial of the Markov transition matrix. Except for a few anomalous cases, the transition matrix can be used to predict recurrence times. Finally, a correspondence between recurrence and elementary particle mass is proposed as an example of an emergent property of the QCA system. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   
40.
A clear understanding of two-phase fluid flow properties in porous media is of importance to CO2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8 mL min 1. For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO2 and water became miscible in the beginning of CO2 injection. CO2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO2 and water to invade into small pore spaces more easily. The study also showed CO2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO2 slightly decreases with the increase of capillary number.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号